Dynamics of localised modes in a random one-dimensional diluted antiferromagnet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys.: Condens. Matter 25575
(http://iopscience.iop.org/0953-8984/2/25/009)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.103
The article was downloaded on 11/05/2010 at 05:59

Please note that terms and conditions apply.

Dynamics of localised modes in a random one-dimensional diluted antiferromagnet

J D Cremasco \dagger and A S T Pires \ddagger
\dagger Departamento de Física, Universidade Federal de Ouro Preto, 35.400-Ouro Preto, MG, Brazil
\ddagger Departamento de Física, Universidade Federal de Minas Gerais, 30.161-Belo Horizonte, MG, Brazil

Received 3 October 1989, in final form 31 January 1990

Abstract

We study the dynamics of localised modes in a random one-dimensional diluted Heisenberg antiferromagnet with an $X Y$ anisotropy and an applied magnetic field perpendicular to the chain, using the double-time retarded and advanced Green functions at zero temperature.

1. Introduction

The study of elementary magnetic excitations on the random one-dimensional diluted antiferromagnet is interesting both theoretically and experimentally (Birgenau and Shirane 1978, Cowley et al 1980). Theoretically, the parameters of the model are those of the pure system, which can be defined precisely (Wolfram and Callaway 1963, Cowley and Buyers 1972, Harris et al 1974, Holcomb 1974), and we can find analytical solutions for the problem using well known approximation schemes. Experimentally, nature offers us real physical systems that correspond remarkably closely to these idealised models, which allow the necessary test for our theories. Neutron studies of the more notable random one-dimensional diluted antiferromagnet $\left(\mathrm{CD}_{3}\right)_{4} \mathrm{NMn}_{c} \mathrm{Cu}_{1-c} \mathrm{Cl}_{3}$ (TMMC: Cu) (Endoh et al 1979, 1981, Boucher et al 1978, Shirane and Birgenau 1977) have contributed to the understanding of the static and dynamic behaviour of the random one-dimensional diluted antiferromagnet.

The effects of randomness are most dramatic in one dimension (Nagler et al 1984, Birgenau and Shirane 1978, Endoh et al 1981) because the presence of a single vacancy in the spin chain breaks up the long-range correlation and blocks up the free propagation of spin waves. Then, for the dynamics, the random one-dimensional diluted antiferromagnet is constituted by a set of finite chains. As in a chain an end spin has only one nearest neighbour whereas an interior spin has two, a resonance associated with excitations on end spins is expected to occur at one-half the zone boundary frequency. However, as we discuss extensively in this paper, the presence of localised modes associated with excitations on end spins depends on the Hamiltonian of the model.

In this paper we investigate the resonances associated with excitations on end spins of the random one-dimensional diluted Heisenberg antiferromagnet with an $X Y$ anisotropy and an applied magnetic field perpendicular to the chain.

We consider a random two-sublattice antiferromagnet chain model, with the impurity-host atom exchange parameter small relative to the host atom-host atom exchange parameter. In the limit of low concentration of impurities and with no tendency for the formation of clusters of impurities, so pairs of impurities are very rare, and at zero temperature, if the spins of the host atoms are sufficiently large, independently of the sign of the impurity-host atom exchange parameter, the chain has long-range order and is in the classical Néel ground state.

Our results can be tested on TMMC: Cu at very low temperatures, in the limit of low concentration of Cu , because the $\mathrm{Mn}-\mathrm{Cu}$ exchange parameter is small relative to the $\mathrm{Mn}-\mathrm{Mn}$ exchange parameter, there is no tendency for the formation of clusters of Cu atoms in this compound, and the Mn atom has a spin ($S=5 / 2$) sufficiently large.

In the Heisenberg chain the excitations on end spins are not separated from the spinwave band. This is explained in terms of the singular nature of the density of states in one dimension at the band edges (Endoh et al 1981). We show that an $X Y$ anisotropy separates the excitations on end spins from the excitations on interior spins. In this respect this work complements the work of Endoh et al (1981), who show that an Ising anisotropy separates the excitations on end spins from the excitations on interior spins.

Thermodynamically, an $X Y$ anisotropy and an applied magnetic field perpendicular to the chain in the Heisenberg chain are equivalent (Pires and Gouvêa 1984). We show that an applied magnetic field perpendicular to the chain, differently from an $X Y$ anisotropy, does not separate the excitations on end spins from the excitations on interior spins.

The Ising chain and the Heisenberg chain with an $X Y$ anisotropy and an applied magnetic field perpendicular to the chain with $h=2[2(1-b)]^{1 / 2}$, where h is the scaled applied magnetic field and b is the anisotropy parameter, are thermodynamically equivalent (Pires and Gouvêa 1984). We show that this equivalence is not preserved in the dynamics of these random diluted antiferromagnets.

2. Hamiltonian

The model we treat is a one-dimensional Heisenberg antiferromagnet, with an $X Y$ anisotropy and a magnetic field applied perpendicular to the chain, in which a fraction, $1-c$, of magnetic ions chosen at random are replaced by non-magnetic ions. The Hamiltonian for this model may be written as

$$
\begin{equation*}
\mathscr{H}=2 J \sum_{n} \rho_{n} \rho_{n+1}\left(S_{n} \cdot S_{n+1}-D S_{n}^{z} S_{n+1}^{z}\right)-\mu g H \sum_{n} \rho_{n} S_{n}^{x} \tag{2.1}
\end{equation*}
$$

with the z axis along the chain direction. Here J and D are the exchange and anisotropy interaction parameters, μ is the Bohr magneton, g is the Lande factor and H is the applied magnetic field. The ρ_{n} are random variables having the value 1 or 0 depending on whether or not the site n is occupied by a magnetic ion. We assume the ρ_{n} are independent: $\overline{\rho_{n}}=\overline{\rho_{n}^{2}}=c$, and $\overline{\rho_{m} \rho_{n}}=c^{2}$ if $n \neq m$. The non-magnetic ions create vacancies randomly distributed in the spin chain.

It is convenient to write the Hamiltonian (2.1) in terms of the spin creation and annihilation operators S_{m}^{+}and S_{m}^{-}. At zero temperature and in the low-concentration
limit of non-magnetic ions widely separated, at the Néel ground state, all spins are aligned in the y direction, so we write

$$
\begin{equation*}
S_{m}^{+}=S_{m}^{z}+\mathrm{i} S_{m}^{x} \quad S_{m}^{-}=S_{m}^{z}-\mathrm{i} S_{m}^{x} \tag{2.2}
\end{equation*}
$$

which obey the commutation relations

$$
\begin{equation*}
\left[S_{m}^{+}, S_{n}^{-}\right]=2 \delta_{m n} S_{m}^{y} \quad\left[S_{m}^{y}, S_{n}^{+}\right]=\delta_{m n} S_{m}^{+} \quad\left[S_{m}^{y}, S_{n}^{-}\right]=-\delta_{m n} S_{m}^{-} \tag{2.3}
\end{equation*}
$$

Equation (2.1) may be expressed in terms of these operators, with the result

$$
\begin{align*}
\mathscr{H}=2 J & \sum_{n} \rho_{n} \rho_{n+1}\left[S_{n}^{y} S_{n+1}^{y}+\frac{1}{2}(1-D / 2)\left(S_{n}^{+} S_{n+1}^{-}+S_{n}^{-} S_{n+1}^{+}\right)\right. \\
& \left.\quad-\frac{1}{4} D\left(S_{n}^{+} S_{n+1}^{+}+S_{n}^{-} S_{n+1}^{-}\right)\right]+\frac{1}{2} \dot{\mathrm{i}} \mu \mathrm{gH} \sum_{n} \rho_{n}\left(\mathrm{~S}_{n}^{+}-\mathrm{S}_{n}^{-}\right) . \tag{2.4}
\end{align*}
$$

For convenience we have defined operators that create excitations on vacancy sites as well as on the magnetic sites. The random variables ρ_{n} ensure that the non-physical excitations on the vacancies are decoupled from the true magnetic excitations of physical interest.

It is convenient to modify the Hamiltonian so that each term does not depend on the product of two random variables, $\rho_{n} \rho_{n+1}$. So we take the additive form for the Hamiltonian

$$
\begin{equation*}
\mathscr{H}=\mathscr{H}_{0}-\sum_{l} q_{l} \mathscr{H}_{l} \tag{2.5}
\end{equation*}
$$

with

$$
\begin{align*}
\mathscr{H}_{0}=\sum_{n}\{2 J[& S_{n}^{y} S_{n+1}^{y}+\frac{1}{2}(1-D / 2)\left(S_{n}^{+} S_{n+1}^{-}+S_{n}^{-} S_{n+1}^{+}\right) \\
& \left.\left.\quad-\frac{1}{4} D\left(S_{n}^{+} S_{n+1}^{+}+S_{n}^{-} S_{n+1}^{-}\right)\right]+(\mathrm{i} \mu g H / 2)\left(S_{n}^{+}-S_{n}^{-}\right)\right\} \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
\mathscr{H}_{l}=\sum_{\Delta}\{2 J[& S_{l}^{y} S_{l+\Delta}^{y}+\frac{1}{2}(1-D / 2)\left(S_{l}^{+} S_{l+\Delta}^{-}+S_{l}^{-} S_{l+\Delta}^{+}\right) \\
& \left.\left.\quad-\frac{1}{4} D\left(S_{l}^{+} S_{l+\Delta}^{+}+S_{l}^{-} S_{l+\Delta}^{-}\right)\right]+(\mathrm{i} \mu g H / 2)\left(S_{l}^{+}-S_{l}^{-}\right)\right\} \tag{2.7}
\end{align*}
$$

where $\Delta= \pm 1$ and the q_{l} are random variables having the value 1 or 0 depending on whether or not the site l is occupied by a vacancy.

The Hamiltonians (2.4) and (2.5) are equivalent except when two or more vacancies are nearest neighbours of one another. Since magnetic properties depend only on the magnetic ions, the excitations will not be affected if we compute properly only the contributions of the magnetic sites. In our model there is no tendency for the formation of clusters of vacancies, so in the low-concentration limit pairs of vacancies are very rare.

3. Green functions

We study the excitations of the system by using the retarded and advanced Green functions (Zubarev 1960)

$$
\begin{align*}
& g_{m n}^{\mathrm{r}}(t)=-\mathrm{i} \theta(t)\left\langle\left[S_{m}^{\alpha}(t), S_{n}^{\beta}(0)\right]\right\rangle_{0} \tag{3.1a}\\
& g_{m n}^{\mathrm{a}}(t)=\mathrm{i} \theta(-t)\left\langle\left[S_{m}^{\alpha}(t), S_{n}^{\beta}(0)\right]\right\rangle_{0} \tag{3.1b}
\end{align*}
$$

where the angular brackets with the 0 subscript denote the ground-state average.

We introduce the temporal Fourier transform

$$
\begin{equation*}
g_{m n}^{\mathrm{r}, \mathrm{a}}(\omega)=\int_{-\infty}^{\infty} g_{m n}^{\mathrm{r}, \mathrm{a}}(t) \mathrm{e}^{\mathrm{i} \omega t} \tag{3.2}
\end{equation*}
$$

So, if we make a cut along the real axis of the complex variable ω, under very general conditions, we can consider the functions $g_{m n}^{\mathrm{r}}(\omega)$ and $g_{m n}^{\mathrm{a}}(\omega)$ as a single analytic function defined as

$$
g_{m n}(\omega)=\left\langle\left\langle S_{m}^{\alpha}: S_{n}^{\beta}\right\rangle\right\rangle_{\omega}= \begin{cases}g_{m n}^{\mathrm{r}}(\omega) & \operatorname{Im} \omega>0 \tag{3.3}\\ g_{m n}^{\mathrm{a}}(\omega) & \operatorname{Im} \omega<0\end{cases}
$$

The dynamic equation for this Green function is

$$
\begin{equation*}
\omega\left\langle\left\langle S_{m}^{\alpha}: S_{n}^{\beta}\right\rangle_{\omega}+\left\langle\left\langle\left[S_{m}^{\alpha}, \mathscr{H}\right]: S_{n}^{\beta}\right\rangle\right\rangle_{\omega}=\left\langle\left[S_{m}^{\alpha}, S_{n}^{\beta}\right]\right\rangle\right. \tag{3.4}
\end{equation*}
$$

and in the calculations we assume the standard decoupling of the second term on the left

$$
\begin{equation*}
\left.《\left\langle S_{l}^{y} S_{m}^{\alpha}: S_{n}^{\beta}\right\rangle\right\rangle=\left\langle S_{l}^{y}\right\rangle\left\langle\left\langle S_{m}^{\alpha}: S_{n}^{\beta}\right\rangle\right\rangle \quad \alpha(\beta) \neq y \tag{3.5}
\end{equation*}
$$

We also introduce the spatial Fourier transform

$$
\begin{align*}
& G(q, \omega)=\frac{1}{N} \sum_{m, n} \mathrm{e}^{\mathrm{i} q(m-n)} g_{m n}(\omega) \tag{3.6a}\\
& G(q, \omega)=\sum_{m-n} \mathrm{e}^{\mathrm{i} q(m-n)}\left\langle g_{m n}(\omega)\right\rangle \quad N \rightarrow \infty \tag{3.6b}
\end{align*}
$$

and its inverse

$$
\begin{equation*}
G_{m n}(\omega)=\frac{1}{N} \sum_{q} \mathrm{e}^{-\mathrm{i} q(m-n)} G(q, \omega)=\left\langle g_{m n}(\omega)\right\rangle \tag{3.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\left\langle g_{m n}(\omega)\right\rangle=\frac{1}{N} \sum_{l} g_{l+m-n, l}(\omega) \tag{3.8}
\end{equation*}
$$

The Green function (3.7) depends only on the difference ($m-n$), because the averaging process restores the translational symmetry.

The Green functions g and G contain features representing the spin excitations and spurious excitations on the vacancies. We require only the physical response $\rho_{m} \rho_{n} g_{m n}(\omega)$ on magnetic sites

$$
\begin{align*}
& \bar{G}(q, \omega)=\frac{1}{N} \sum_{m, n} \mathrm{e}^{\mathrm{i} q(m-n)} \rho_{m} \rho_{n} G_{m n}(\omega) \tag{3.9a}\\
& \bar{G}(q, \omega)=\sum_{m-n} \mathrm{e}^{\mathrm{i} q(m-n)}\left\langle\rho_{m} \rho_{n} G_{m n}(\omega)\right\rangle \quad N \rightarrow \infty \tag{3.9b}
\end{align*}
$$

However, it is easier to work with $G(q, \omega)$ than with $\bar{G}(q, \omega)$. So we will make all calculations using $G(q, \omega)$ and then relate these to $\bar{G}(q, \omega)$ by the formal equation (Harris et al 1974)

$$
\begin{equation*}
\bar{G}(q, \omega)=[1-L(q, \omega)] G(q, \omega) \tag{3.10}
\end{equation*}
$$

where $L(q, \omega)$ is the vacancy projector, which we define after describing the calculation of $G(q, \omega)$.

As we are studying a two-sublattice model, it is convenient to introduce the four Green functions (Lines 1964)

$$
\begin{array}{ll}
g_{m n}^{11}(\omega)=\left\langle\left\langle S_{m}^{+}: S_{n}^{-}\right\rangle_{\omega}\right. & g_{m n}^{12}(\omega)=\left\langle\left\langle S_{m}^{+}: S_{n}^{+}\right\rangle\right\rangle_{\omega} \\
g_{m n}^{21}(\omega)=\left\langle\left\langle S_{m}^{-}: S_{n}^{-}\right\rangle_{\omega}\right. & g_{m n}^{22}(\omega)=\left\langle\left\langle S_{m}^{-}: S_{n}^{+}\right\rangle\right\rangle_{\omega} . \tag{3.11}
\end{array}
$$

Here $g_{m n}^{11}(\omega)$ and $g_{m n}^{22}(\omega)$ are non-zero only if the sites m and n belong to the same sublattice, while $g_{m n}^{12}(\omega)$ and $g_{m n}^{21}(\omega)$ are non-zero if the sites m and n belong to different sublattices.

4. The pure chain

We introduce the canonical transformation of the spin operators on the down sublattice defined as (Cowley and Buyers 1972)

$$
\begin{equation*}
S_{m}^{+} \rightarrow S_{m}^{-} \quad S_{m}^{-} \rightarrow S_{m}^{+} \quad S_{m}^{y} \rightarrow-S_{m}^{y} \tag{4.1}
\end{equation*}
$$

where m is a site of the down sublattice.
In the study of the pure chain we introduce the four Green functions

$$
\begin{equation*}
P_{m n}^{\alpha \beta}(\omega)=g_{m n}^{\alpha \beta}(\omega)=G_{m n}^{\alpha \beta}(\omega) \tag{4.2}
\end{equation*}
$$

with $\alpha(\beta)=1$ and 2 . The last equality in (4.2) comes from translational symmetry of the pure crystal.

From the dynamic equation (3.4) and from the standard decoupling procedure (3.5) we find the dynamic equations for the Green functions (4.2) as

$$
\begin{equation*}
\sum_{k}\left[\left(\omega-h^{2} / 2 \omega\right) I \delta_{m k}-D_{m k}\right] P_{k n}(\omega)=\delta_{m n} K \tag{4.3}
\end{equation*}
$$

where
$I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad D=\left[\begin{array}{ll}D^{11} & D^{12} \\ D^{21} & D^{22}\end{array}\right] \quad P=\left[\begin{array}{ll}P^{11} & P^{12} \\ P^{21} & P^{22}\end{array}\right] \quad K=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$
and
$D_{i j}^{11}=2 \delta_{i j}$
$D_{i j}^{12}=2(1-D / 2) \delta_{i \pm 1, j}$
$D_{i j}^{21}=-D_{i j}^{12}$
$D_{i j}^{22}=-D_{i j}^{11}$
with a frequency scale $2 J S=1$ and $h=\mu g H / 2 J S$.
The equations (4.3) are solved by using spatial Fourier transform (3.6) to give

$$
\begin{align*}
& P^{\alpha \beta}(q, \omega)=\frac{1}{N} \sum_{m, m} \mathrm{e}^{\mathrm{i} q(m-n)} P_{m n}^{\alpha \beta}(\omega) \tag{4.6a}\\
& P^{\alpha \beta}(q, \omega)=\sum_{m-n} \mathrm{e}^{\mathrm{i} q(m-n)} P_{m n}^{\alpha \beta}(\omega) . \tag{4.6b}
\end{align*}
$$

So, we find

$$
\left[\begin{array}{cl}
x(\omega)-2 & a \cos q \tag{4.7}\\
-a \cos q & x(\omega)+2
\end{array}\right]\left[\begin{array}{ll}
P^{11}(q, \omega) & P^{12}(q, \omega) \\
P^{21}(q, \omega) & P^{22}(q, \omega)
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

or

$$
P(q, \omega)=\frac{1}{x^{2}(\omega)-4+a^{2} \cos ^{2} q}\left[\begin{array}{cl}
x(\omega)+2 & -a \cos q \tag{4.8}\\
-a \cos q & -x(\omega)+2
\end{array}\right]
$$

with the lattice parameter $\lambda=1$, and

$$
\begin{equation*}
x(\omega)=\omega-h^{2} / 2 \omega \quad a=2-D \tag{4.9}
\end{equation*}
$$

The elementary magnetic excitations of this system are magnons given by the poles of the equation (4.8). So

$$
\begin{equation*}
x^{2}(\omega)-4+a^{2} \cos ^{2} q=0 \tag{4.10}
\end{equation*}
$$

gives the elementary magnetic excitations of the pure chain.

5. The random diluted system

From the dynamic equation (3.4) and using the Hamiltonian (2.5), the canonical operator transformation (4.1) and the standard decoupling procedure (3.5), we derive a Dyson equation for the Green functions of the random diluted system

$$
\begin{equation*}
g_{m n}(\omega)=P_{m n}(\omega)+\sum_{k, j} P_{m k}(\omega) V_{k j}(\omega) g_{j n}(\omega) \tag{5.1}
\end{equation*}
$$

with

$$
g=\left[\begin{array}{ll}
g^{11} & g^{12} \tag{5.2}\\
g^{21} & g^{22}
\end{array}\right] \quad V=\left[\begin{array}{ll}
V^{11} & V^{12} \\
V^{21} & V^{22}
\end{array}\right]
$$

and

$$
\begin{equation*}
V=\sum_{l} q_{l} V_{l} \tag{5.3}
\end{equation*}
$$

where V_{l} is the potential associated with a single vacancy on the site l and has the four blocks with non-null elements
$V_{l}^{11}(\omega)=-\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2+h^{2} / 2 \omega & 0 \\ 0 & 0 & 1\end{array}\right] \quad V_{l}^{12}(\omega)=-\frac{1}{2} a\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$V_{l}^{21}(\omega)=V_{l}^{12}(\omega)$
$V_{l}^{22}(\omega)=V_{l}^{11}(-\omega)$.
We introduce the scattering T matrix defined as

$$
\begin{equation*}
T_{m n}(\omega)=\sum_{k} V_{m k}(\omega) M_{k n}^{-1}(\omega) \tag{5.5}
\end{equation*}
$$

with

$$
\begin{equation*}
M_{m n}(\omega)=\delta_{m n}-\sum_{k} P_{m k}(\omega) V_{k n}(\omega) \tag{5.6}
\end{equation*}
$$

and rewrite equation (5.1) as

$$
\begin{equation*}
g_{m n}(\omega)=P_{m n}(\omega)+\sum_{k, j} P_{m k}(\omega) T_{k j}(\omega) g_{j n}(\omega) \tag{5.7}
\end{equation*}
$$

We can also write formally a Dyson equation for the Green functions $G_{m n}(\omega)$, i.e.

$$
\begin{equation*}
G_{m n}(\omega)=P_{m n}(\omega)+\sum_{k, j} P_{m k}(\omega) \sigma_{k j}(\omega) G_{j n}(\omega) \tag{5.8}
\end{equation*}
$$

where

$$
G=\left[\begin{array}{ll}
G^{11} & G^{12} \tag{5.9}\\
G^{21} & G^{22}
\end{array}\right] \quad \sigma=\left[\begin{array}{ll}
\sigma^{11} & \sigma^{12} \\
\sigma^{21} & \sigma^{22}
\end{array}\right]
$$

and $\sigma(\omega)$ is the self-energy.
We see from (5.3) that the problem of a single vacancy localised on the site l is tractable. The scattering T matrix is now given by

$$
\begin{equation*}
T_{l ; m n}(\omega)=\sum_{k} V_{l ; m k}(\omega) M_{l ; k n}^{-1}(\omega) \tag{5.10}
\end{equation*}
$$

with

$$
\begin{equation*}
M_{l ; m n}(\omega)=\delta_{m n}-\sum_{k} P_{m k}(\omega) V_{l ; k n}(\omega) \tag{5.11}
\end{equation*}
$$

The T_{l} matrix has non-null elements only in four blocks, similarly to the blocks of V_{l} defined in (5.4). The presence of g on the right-hand side of equation (5.1) shows that the exact solution includes multiple scattering of the spin excitations by a single defect.

From the configurational average of equation (5.7) and from equation (5.8) we find

$$
\begin{equation*}
\sigma=(I+\langle T\rangle P)^{-1}\langle T\rangle \tag{5.12}
\end{equation*}
$$

where $\langle T\rangle$ is the configurational average of the scattering T matrix.
In order to find the configurational average of the scattering T matrix, we first write

$$
\begin{equation*}
T=V(1+P T)=\sum_{l} Q_{l} \tag{5.13}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{l}=q_{l} V_{l}(1+P T)=T_{l}\left(1+P \sum_{m \neq l} Q_{m}\right) \tag{5.14}
\end{equation*}
$$

To eliminate the restriction $m \neq l$ in (5.14), we introduce the operator \bar{P} defined as

$$
\begin{array}{lll}
\bar{P}_{m n}^{\alpha \beta}=P_{m n}^{\alpha \beta} & \text { if } & m(n) \neq l-1, l, l+1 \\
\bar{P}_{m n}^{\alpha \beta}=0 & \text { if } & m(n)=l-1, l, l+1 \tag{5.15}
\end{array}
$$

and $\alpha(\beta)=1.2$. From (5.14) and (5.15) we derive

$$
\begin{equation*}
T=\sum_{l} T_{l}(1+\bar{P} T) \tag{5.16}
\end{equation*}
$$

Let us make the approximation (average T-matrix approximation (ATA))

$$
\begin{equation*}
\left\langle\sum_{l} T_{l} T\right\rangle=\left\langle\sum_{l} T_{l}\right\rangle\langle T\rangle=(1-c)\left\langle T_{l}\right\rangle\langle T\rangle \tag{5.17}
\end{equation*}
$$

to find

$$
\begin{equation*}
\langle T\rangle=\left[I-(1-c)\left\langle T_{l}\right\rangle \bar{P}\right]^{-1}(1-c)\left\langle T_{l}\right\rangle . \tag{5.18}
\end{equation*}
$$

From (5.12) and (5.18) we derive

$$
\begin{equation*}
\sigma=\left[I-(1-c)\left\langle T_{l}\right\rangle P_{l}\right]^{-1}(1-c)\left\langle T_{l}\right\rangle . \tag{5.19}
\end{equation*}
$$

So in the low-concentration limit $(1-c) \ll 1$, we have

$$
\begin{equation*}
\sigma=(1-c)\left\langle T_{l}\right\rangle \tag{5.20}
\end{equation*}
$$

where $\left\langle T_{l}\right\rangle$ is the configurational average of the scattering matrix for a single localised vacancy.

The Green functions $G_{m n}(\omega)$ have translational symmetry (3.7), then the spatial Fourier transform of (5.8) is

$$
\begin{equation*}
G(q, \omega)=P(q, \omega)+P(q, \omega) \sigma(q, \omega) G(q, \omega) \tag{5.21}
\end{equation*}
$$

where

$$
\begin{align*}
& G^{\alpha \beta}(q, \omega)=\frac{1}{N} \sum_{m, n} G_{m n}^{\alpha \beta}(\omega) \mathrm{e}^{\mathrm{i} q(m-n)} \tag{5.22}\\
& \sigma^{\alpha \beta}(q, \omega)=(1-c) \sum_{m, n} T_{l ; m n}^{\alpha \beta}(\omega) \mathrm{e}^{\mathrm{i} q(m-n)}
\end{align*}
$$

$T_{l ; m n}^{\alpha \beta}$ has non-null elements for $m(n)=l-1, l, l+1$, where l is a site occupied by a vacancy, and $\alpha(\beta)=1,2$.

From (5.21) we find

$$
\begin{equation*}
G(q, \omega)=[I-P(q, \omega) \sigma(q, \omega)]^{-1} P(q, \omega) \tag{5.23}
\end{equation*}
$$

In order to find the vacancy projector $L(q, \omega)$, we introduce the restricted spatial Fourier transform (Cowley and Buyers 1972)

$$
\begin{align*}
& \underline{G}(q, \omega)=\frac{1}{N} \sum_{l, n} q_{l} g_{l n}(\omega) \mathrm{e}^{\mathrm{i} q(l-n)} \\
& \underline{V}(q, \omega)=\sum_{k} V_{l ; k l}(\omega) \mathrm{e}^{\mathrm{i} q(k-l)} \tag{5.24}\\
& \underline{G}_{\Delta}(q, \omega)=\frac{1}{N} \sum_{l, n} q_{l} g_{l+\Delta, n}(\omega) \mathrm{e}^{\mathrm{i} q[l+\Delta)-n]} \\
& \underline{V}_{\Delta}(q, \omega)=\sum_{k} V_{l ; k, l+\Delta}(\omega) \mathrm{e}^{\mathrm{i} q[k-(l+\Delta)]}
\end{align*}
$$

where $\Delta= \pm 1$. So the spatial Fourier transform of equation (5.1) is

$$
\begin{align*}
& G(q, \omega)=P(q, \omega)+P(q, \omega) \underline{V}(q, \omega) \underline{G}(q, \omega) \\
&+\sum_{\Delta} P(q, \omega) \underline{V}_{\Delta}(q, \omega) \underline{G}_{\Delta}(q, \omega) \tag{5.25}
\end{align*}
$$

From equations (5.21) and (5.25) we find

$$
\begin{equation*}
\sigma(q, \omega) G(q, \omega)=\underline{V}(q, \omega) \underline{G}(q, \omega)+\sum_{\Delta} \underline{V}_{\Delta}(q, \omega) \underline{G}_{\Delta}(q, \omega) \tag{5.26}
\end{equation*}
$$

from which we derive

$$
\begin{equation*}
\underline{G}(q, \omega)=(1-c) \bar{M}(q, \omega) G(q, \omega)=L(q, \omega) G(q, \omega) \tag{5.27}
\end{equation*}
$$

with

$$
\bar{M}(q, \omega)=\sum_{l-n} M_{l ; l n}^{-1}(\omega) \mathrm{e}^{\mathrm{i} q(l-n)}
$$

Then the physical Green function is

$$
\begin{equation*}
\bar{G}(q, \omega)=G(q, \omega)-\underline{G}(q, \omega)=[I-L(q, \omega)] G(q, \omega) . \tag{5.28}
\end{equation*}
$$

The poles of the physical Green function (5.28) give the magnetic elementary excitations of the random diluted system. Equations (5.28), (5.27), (5.24) and (5.11) show that the excitations associated with the defects, created by the vacancies, are the solutions of the determinant equation

$$
\begin{equation*}
\operatorname{det}\left(I-P V_{l}\right)=0 \tag{5.29}
\end{equation*}
$$

We can factorise this equation to find
$x(\omega)-\frac{1}{2}\left[1-\frac{1}{4}(1-b)^{2}\right]^{1 / 2}\left\{\left[9-\frac{1}{4}(1-b)^{2}\right]^{1 / 2}-\left[1-\frac{1}{4}(1-b)^{2}\right]^{1 / 2}\right\}=0$
with the anisotropy parameter

$$
\begin{equation*}
b=1-D \tag{5.31}
\end{equation*}
$$

The physical quantity of experimental interest is the scattering function, which is directly related to the scattering cross section in a scattering experiment. This quantity is related to the Greeen function at zero temperature by (Lovesey 1980, Cowley and Buyers 1972)
$S(q, \omega)=\operatorname{Im}\left[\bar{G}^{11}(q, \omega) \pm \bar{G}^{12}(q, \omega)+\bar{G}^{22}(q, \omega) \pm \bar{G}^{21}(q, \omega)\right]$
where the upper signs refer to nuclear reciprocal lattice points and the lower signs refer to magnetic reciprocal lattice points.

Substituting (3.10) in (5.33) we obtain

$$
\left.\left.\left.\left.\begin{array}{rl}
S(q, \omega)= & \operatorname{Im}\{
\end{array}\right]-L^{11}(q, \omega)-L^{21}(q, \omega)\right]\left[G^{11}(q, \omega) \pm G^{12}(q, \omega)\right]\right\} \text { + }\left[1-L^{12}(q, \omega)-L^{22}(q, \omega)\right]\left[G^{22}(q, \omega) \pm G^{21}(q, \omega)\right]\right\},
$$

Using the well known Dirac formula

$$
\begin{equation*}
\frac{1}{X \pm \mathrm{i} 0^{+}}=\frac{1}{X} \mp \mathrm{i} \pi \delta(X) \tag{5.34}
\end{equation*}
$$

and (5.6), (5.23) and (5.27), we see that (5.33) is a linear combination of delta functions with arguments given by (4.10) and (5.30).

So our theory gives a zero halfwidth at the half-maximum of the scattering function, which is consistent with the approach used in this work (Birgenau and Shirane 1978). The non-zero halfwidths at the half-maximum of the scattering function in the works of Harris et al (1974), Holcomb (1974) and Endoh et al (1981) are introduced ad hoc, considering a non-null small imaginary part in the frequencies of the scattering function.

Consequently, equations (4.10) and (5.30), and equation (5.33), give the same information about the dynamics of the system.

6. Results and discussion

We discuss the roles played by $X Y$ anisotropy and by applied magnetic field perpendicular to the chain, and the effect of both on the localisation of the resonances

Figure 1. Frequency ω (in units of $2 J S$) versus the $X Y$ anisotropy parameter b, showing how the resonance associated with the defect is pushed to zero frequency as the model is changed from $X Y$ model to isotropic Heisenberg model, as the b parameter is increased from 0 to 1 , with no applied magnetic field.

Figure 2. Frequency ω (in units of $2 J S$) versus the Ising anisotropy parameter d, with no applied magnetic field, showing how the resonance associated with the defect is pushed to zero frequency as the model is changed from Ising model to isotropic Heisenberg chain, as the d parameter is increased from 0 to 1. (After Endoh et al 1981.)
associated with excitations on end spins of the random one-dimensional diluted Heisenberg antiferromagnetic chain.

We show in figure 1 the role played by $X Y$ anisotropy. The superior and inferior limits of the energy band are given by equation (4.10) with $h=0$, and $q=\pi / 2$ and $q=$ 0 , respectively. The excitations on spin chain ends are given by equation (5.30). We see that, in the Heisenberg chain, $b=1$, there are no separated resonances associated with excitations on end spins. This is explained in terms of the singular nature of the density of states in one dimension at the band edges (Endoh et al 1981). When the anisotropy parameter decreases from $b=1$ to $b=0$, i.e. the model is changed from Heisenberg to $X Y$ model, the resonances associated with excitations on end spins separate from the spin-wave band. At $b=0$, i.e. $X Y$ model, the resonance associated with excitations on end spins occurs at a frequency equal to one-half of the inferior limit of the spin-wave band frequencies.

In figure 2 we show results of a similar study of Endoh et al (1981), who show that, when the Ising anisotropy parameter d changes from $d=1$ to $d=0$, i.e. the model is changed from Heisenberg to Ising, the frequencies of the resonances associated with excitations on end spins are different from the spin-wave band frequencies.

This part of our work complements the work of Endoh et al (1981) and we can conclude that in the Heisenberg model the anisotropy, independent of its type, separates the frequencies of the resonances associated with excitations on spin chain ends from the spin-wave band frequencies.

Thermodynamically, the Heisenberg chains with an applied magnetic field perpendicular to the chain or with an $X Y$ anisotropy with $h=2[2(1-b)]^{1 / 2}$, where h is the scaled magnetic field ($h=\mu g H / 2 J S$) and b is the $X Y$ anisotropy parameter $(b=1-D)$, are equivalent (Pires and Gouvêa 1984). In figure 3 we show plots of the spin-wave band with $b=1$ (Heisenberg model), and of resonances associated with excitations on end spins, equation (5.30). We see that the resonances associated with excitations on end

Figure 3. Frequency ω (in units of $2 J S$) versus the scaled applied magnetic field $h(h=\mu g H / 2 J S)$, for the isotropic Heisenberg chain.

Figure 4. Frequency ω (in units of $2 J S$) versus the scaled applied magnetic field $h(h=\mu g h / 2 J S)$, with $X Y$ anisotropy parameter $b=0.9914$.
spins do not occur at frequencies outside the spin-wave band, even for fields as great as $70 \mathrm{kOe}(h \simeq 0.32$). Then, differently from $X Y$ anisotropy, an applied magnetic field perpendicular to the chain does not localise the resonances associated with excitations on end spins.

An Ising model and a Heisenberg model with an $X Y$ anisotropy and an applied magnetic field perpendicular to the chain, with $h=2[2(1-b)]^{1 / 2}$, are thermodynamically equivalent (Pires and Gouvêa 1984). As we are interested particularly in TMMC: Cu , in figure 4 we plot equations (4.10) and (5.30) with $b=0.9914$, which is the $X Y$ anisotropy parameter of TMMC: Cu (Heilmann et al 1981). First, we see a split of the spin-wave band, which comes from the out-of-plane spin contributions. Secondly, for $b=0.9914$ and $h=0.26$, the Heisenberg model does not have the same behaviour as the Ising model.

Then we may conclude that the thermodynamic equivalence between an $X Y$ anisotropy and an applied magnetic field perpendicular to the chain, and between the Ising model and the Heisenberg model with an $X Y$ anisotropy and an applied magnetic field perpendicular to the chain, are not preserved on the dynamics of the random onedimensional diluted antiferromagnets.

Acknowledgments

This research was partially supported by the Brazilian Government Agencies FINEP, CNPq and CAPES.

Appendix

In the calculations using equation (5.30) we have to know the Green functions $P_{m n}^{\alpha \beta}(\omega), \alpha(\beta)=1,2$, which have translational symmetry, whence $P_{m n}^{\alpha \beta}(\omega)=$ $P_{m-n!}^{\alpha \beta}(\omega)$, and we need to evaluate $P_{0}^{\alpha \alpha}(\omega), P_{2}^{\alpha \alpha}(\omega)$ and $P_{1}^{\alpha \beta}(\omega)$.

These Green functions are given by equation (3.8) as

$$
\begin{equation*}
P_{m n}^{\alpha \beta}(\omega)=\frac{1}{N} \sum_{q} \mathrm{e}^{-\mathrm{i} q(m-n)} P^{\alpha \beta}(q, \omega) \tag{A.1}
\end{equation*}
$$

which for an infinite chain can be approximated by the integral over the first Brillouin zone

$$
\begin{equation*}
P_{m n}^{\alpha \beta}(\omega)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{i} q(m-n)} P^{\alpha \beta}(q, \omega) \mathrm{d} q . \tag{A.2}
\end{equation*}
$$

In the evaluation of the integrals (A.2) we make use of the residues method to find

$$
\begin{align*}
& P_{0}^{11}(\omega)=x+2 /\left(A^{2}+A B\right)^{1 / 2} \\
& P_{2}^{11}(\omega)=\left[x+2 / B\left(A^{2}+A B\right)^{1 / 2}\right]\left[-(2 A+B)+2\left(A^{2}+A B\right)^{1 / 2}\right] \tag{A.3}\\
& P_{1}^{12}(\omega)=\left[2 / a\left(A^{2}+A B\right)^{1 / 2}\right]\left[A-\left(A^{2}+A B\right)^{1 / 2}\right]
\end{align*}
$$

with

$$
\begin{array}{ll}
A=x^{2}-4 & B=a^{2} \\
P^{22}(\omega)=P^{11}(-\omega) & P^{21}(\omega)=P^{12}(\omega) \tag{A.5}
\end{array}
$$

When A is real and $|A| \leqslant B$ the integrals (A.2) are not well defined; following the standard procedure (Wolfram and Callaway 1963) we add to the frequency a small, positive, imaginary part.

As we are interested only in the localised impurity states, we take in our calculations ω real and $|A|>B$.

References

Birgenau R J and Shirane G 1978 Phys. Today December, p 32
Boucher P, Dupas C, Fitzgerald W J, Knorr K and Renard J P 1978 J. Physique Coll. 39 L86
Cowley R A, Birgenau R J and Shirane G 1980 Proc. NATO Adv. Stud. Inst. on Strongly Fluctuating Condensed Matter Systems ed T Riste (New York: Plenum)
Cowley R A and Buyers W J L 1972 Rev. Mod. Phys. 44406
Endoh Y, Heilmann I U, Birgenau R J, Shirane G, McGurn A R and Thorpe M F 1981 Phys. Rev. B 234582
Endoh Y, Shirane G, Birgenau R J and Ajiro Y 1979 Phys. Rev. B 191476
Harris A B, Leath P L, Nickel B G and Elliott R J 1974 J. Phys. C: Solid State Phys. 71693
Heilmann L G, Kyens J K, Endoh Y, Reiter E F, Shirane G and Birgenau R J 1981 Phys. Rev. B 243939
Holcomb W K 1974 J. Phys. C: Solid State Phys. 74299
Lines M E 1964 Phys. Rev. A 1351336
Lovesey S 1980 Condensed Matter-Dynamic Correlations (New York: Benjamin-Cummings)
Nagler S E, Buyers W J L, Armstrong R L and Ritchie R A 1984 J. Phys. C: Solid State Phys. 74819
Pires A S T and Gouvêa M E 1984 J. Phys. C: Solid State Phys. 174009
Shirane G and Birgenau R J 1977 Physica 86-88 B + C 639
Wolfram T and Callaway J 1963 Phys. Rev. B 1302207
Zubarev D N 1960 Sov. Phys.-Usp. 3320

