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Abstract. We study the dynamics of localised modes in a random one-dimensional diluted 
Heisenberg antiferromagnet with an XY anisotropy and an applied magnetic field per- 
pendicular to the chain, using the double-time retarded and advanced Green functions at 
zero temperature. 

1. Introduction 

The study of elementary magnetic excitations on the random one-dimensional diluted 
antiferromagnet is interesting both theoretically and experimentally (Birgenau and 
Shirane 1978, Cowley et a1 1980). Theoretically, the parameters of the model are those 
of the pure system, which can be defined precisely (Wolfram and Callaway 1963, Cowley 
and Buyers 1972, Harris et a1 1974, Holcomb 1974), and we can find analytical solutions 
for the problem using well known approximation schemes. Experimentally, nature 
offers us real physical systems that correspond remarkably closely to these idealised 
models, which allow the necessary test for our theories. Neutron studies of the more 
notable random one-dimensional diluted antiferromagnet (CD3)4NMn,Cu,-,C13 
(TMMC: Cu) (Endoh et a1 1979, 1981, Boucher et a1 1978, Shirane and Birgenau 1977) 
have contributed to the understanding of the static and dynamic behaviour of the random 
one-dimensional diluted antiferromagnet. 

The effects of randomness are most dramatic in one dimension (Nagler et a1 1984, 
Birgenau and Shirane 1978, Endoh et a1 1981) because the presence of a single vacancy 
in the spin chain breaks up the long-range correlation and blocks up the free propagation 
of spin waves. Then, for the dynamics, the random one-dimensional diluted anti- 
ferromagnet is constituted by a set of finite chains. As in a chain an end spin has only 
one nearest neighbour whereas an interior spin has two, a resonance associated with 
excitations on end spins is expected to occur at one-half the zone boundary frequency. 
However, as we discuss extensively in this paper, the presence of localised modes 
associated with excitations on end spins depends on the Hamiltonian of the model. 

In this paper we investigate the resonances associated with excitations on end spins of 
the random one-dimensional diluted Heisenberg antiferromagnet with anXY anisotropy 
and an applied magnetic field perpendicular to the chain. 
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We consider a random two-sublattice antiferromagnet chain model, with the 
impurity-host atom exchange parameter small relative to the host atom-host atom 
exchange parameter. In the limit of low concentration of impurities and with no tendency 
for the formation of clusters of impurities, so pairs of impurities are very rare, and at 
zero temperature, if the spins of the host atoms are sufficiently large, independently of 
the sign of the impurity-host atom exchange parameter, the chain has long-range order 
and is in the classical NCel ground state. 

Our results can be tested on TMMC : Cu at very low temperatures, in the limit of low 
concentration of Cu, because the Mn-Cu exchange parameter is small relative to the 
Mn-Mn exchange parameter, there is no tendency for the formation of clusters of Cu 
atoms in this compound, and the Mn atom has a spin (S = 5/2) sufficiently large. 

In the Heisenberg chain the excitations on end spins are not separated from the spin- 
wave band. This is explained in terms of the singular nature of the density of states in 
one dimension at the band edges (Endoh et a1 1981). We show that an XY anisotropy 
separates the excitations on end spins from the excitations on interior spins. In this 
respect this work complements the work of Endoh et af  (1981), who show that an Ising 
anisotropy separates the excitations on end spins from the excitations on interior spins. 

Thermodynamically, an X Y  anisotropy and an applied magnetic field perpendicular 
to the chain in the Heisenberg chain are equivalent (Pires and GouvCa 1984). We show 
that an applied magnetic field perpendicular to the chain, differently from an XY 
anisotropy, does not separate the excitations on end spins from the excitations on interior 
spins. 

The Ising chain and the Heisenberg chain with an X Y  anisotropy and an applied 
magnetic field perpendicular to the chain with h = 2[2(1 - b)]'/2, where h is the scaled 
applied magnetic field and b is the anisotropy parameter, are thermodynamically equiv- 
alent (Pires and GouvCa 1984). We show that this equivalence is not preserved in the 
dynamics of these random diluted antiferromagnets. 

2. Hamiltonian 

The model we treat is a one-dimensional Heisenberg antiferromagnet, with an X Y  
anisotropy and a magnetic field applied perpendicular to the chain, in which a fraction, 
1 - c ,  of magnetic ions chosen at random are replaced by non-magnetic ions. The 
Hamiltonian for this model may be written as 

2t = 2 J C  P n P n + l ( S n  * Sncl - DS:%+,) - M H C  PnSx, (2.1) 
n n 

with the z axis along the chain direction. Here J and D are the exchange and anisotropy 
interaction parameters, y is the Bohr magneton, g is the Lande factor and H is the 
applied magnetic field. The p n  are random variables having the value 1 or 0 depending 
on whether or not the site II is occupied by a magnetic ion. We assume the pn are 
independent: pn = = c ,  and pmpn = c2 if n # m. The non-magnetic ions create 
vacancies randomly distributed in the spin chain. 

It is convenient to write the Hamiltonian (2.1) in terms of the spin creation and 
annihilation operators SA and S i .  At zero temperature and in the low-concentration 

- 
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limit of non-magnetic ions widely separated, at the NCel ground state, all spins are 
aligned in they direction, so we write 

which obey the commutation relations 
SL = S& + iSX, S ;  = S ;  - iSX, (2 * 2) 

[SA, S , ]  = 2SmnSy, [SY,, S,+]  = S m n S ;  [ S y , ,  S,] = -6,,S,. (2.3) 

~ = ~ ~ J E P ~ P ~ + ~ [ s Y , s Y , + ~  + & ( 1 - ~ / 2 ) ( ~ , + ~ , + 1  +s,s,++,) 
Equation (2.1) may be expressed in terms of these operators, with the result 

n 

- iD(S,+S,++, + S;S;+l)] + & i p g H z  p,(S,+ - S i ) .  (2.4) 
n 

For convenience we have defined operators that create excitations on vacancy sites 
as well as on the magnetic sites. The random variables pn ensure that the non-physical 
excitations on the vacancies are decoupled from the true magnetic excitations of physical 
interest. 

It is convenient to modify the Hamiltonian so that each term does not depend on 
the product of two random variables, So we take the additive form for the 
Hamiltonian 

x = xo - q/x/  (2.5) 
/ 

with 

xo = {2J[Sy,SY,+1 + i(1 - D/2)(s,fs,+1 + S,S,++l) 
n 

- tD(S,'S,'+l + S,s;+l)] + (ipgH/2)(S,t - S i ) }  (2.6) 
and 

where A = *l and the q1 are random variables having the value 1 or 0 depending on 
whether or not the site 1 is occupied by a vacancy. 

The Hamiltonians (2.4) and (2.5) are equivalent except when two or more vacancies 
are nearest neighbours of one another. Since magnetic properties depend only on the 
magnetic ions, the excitations will not be affected if we compute properly only the 
contributions of the magnetic sites. In our model there is no tendency for the formation 
of clustersof vacancies, so in the low-concentration limit pairs of vacancies are very rare. 

3. Green functions 

We study the excitations of the system by using the retarded and advanced Green 
functions (Zubarev 1960) 

gLn(t) = -ie(t)([SE(t), s!(O)I)0 ( 3 . 1 ~ )  
g&n(t) = ie(-t)([SE(t), St(O)I)0 (3 . lb)  

where the angular brackets with the 0 subscript denote the ground-state average. 
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We introduce the temporal Fourier transform 

gh;(o) = J-m gh:(t) e iw ' .  
--m 

( 3 . 4  

So, if we make a cut along the real axis of the complex variable w ,  under very general 
conditions, we can consider the functions ghn (w )  andg;,(w) as a single analytic function 
defined as 

The dynamic equation for this Green function is 

4s; : Sf)), + (([SE, XI : S 9 w  = ([%, SEI) 

((s;s; : Sf)) = (s:)((s; : Sf)) a(P> # Y .  

(3.4) 

(3.5) 

and in the calculations we assume the standard decoupling of the second term on the left 

We also introduce the spatial Fourier transform 

G(q, w )  = eiq(m-n)(gmn(w)) N +  
m-n  

and its inverse 

1 
G m n ( w )  = -2 e-iq(m-n) G(q, w )  = (gmn(w))  

N ,  
with 

( 3 . 6 ~ )  

(3.6b) 

(3.7) 

The Green function (3.7) depends only on the difference (m - n ) ,  because the 
averaging process restores the translational symmetry. 

The Green functions g and G contain features representing the spin excitations and 
spurious excitations on the vacancies. We require only the physical response pmpngmn(w) 
on magnetic sites 

( 3 . 9 ~ )  

G(q,  U) = C eiq(m-n) ( p m p n G m n ( w ) )  N 4  m. (3.9b) 

However, it is easier to work with G(q, 0) than with G(q, w) .  So we will make all 
calculations using G(q, 0) and then relate these to G(q, w )  by the formal equation 
(Harris et aZl974) 

a?, w )  = - U q ,  w)lG(q, 0) (3.10) 

where L(q, w )  is the vacancy projector, which we define after describing the calculation 

m - n  

of G(q, w).  
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As we are studying a two-sublattice model, it is convenient to introduce the four 
Green functions (Lines 1964) 

g!?L(4 = ((SA : Si)), 

g2n (0) = ((Si : s i  )>, 
gX(0) = ((SA : Si>>, 

g2n(w) ((Si : S,'>>,* 
(3.11) 

Here g,!,!,(w) and gzfl(w) are non-zero only if the sites m and n belong to the same 
sublattice, while gEn (0) and gEn ( w )  are non-zero if the sites m and n belong to different 
sublattices. 

4. The pure chain 

We introduce the canonical transformation of the spin operators on the down sublattice 
defined as (Cowley and Buyers 1972) 

where m is a site of the down sublattice. 
s; + s, s, + s; sym+ -sy, (4.1) 

Pg{(w) = gg$(w) = Gg{(w)  

In the study of the pure chain we introduce the four Green functions 

(4.2) 
with a(P) = 1 and 2. The last equality in (4.2) comes from translational symmetry of the 
pure crystal. 

From the dynamic equation (3.4) and from the standard decoupling procedure (3.5) 
we find the dynamic equations for the Green functions (4.2) as 

K =  (4.4) 0 -1  "1 
(4.5) D?.' = -D!? 0 2 2  = -D!! Di2 = 2(1 - D/2)6ikl,j 11 11 (1 U 

with a frequency scale 2JS = 1 and h = ,ugH/2JS. 
The equations (4.3) are solved by using spatial Fourier transform (3.6) to give 

So, we find 

- - 1 x ( w )  - 2 a cos q P ( q ,  U )  P 2 ( q ,  w )  

-a cos q x ( w )  + 2 P21(q, w )  ~ ~ ~ ( q ,  w )  

(4.6b) 

(4.7) 1 0 -1 "1 
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X ( W )  = o - h2/20 a = 2 - D .  (4.9) 

The elementary magnetic excitations of this system are magnons given by the poles 

(4.10) 

of the equation (4.8). So 

x2(o )  - 4 + a2  cos2 q = 0 

gives the elementary magnetic excitations of the pure chain. 

5. The random diluted system 

From the dynamic equation (3.4) and using the Hamiltonian (2.5), the canonical oper- 
ator transformation (4.1) and the standard decoupling procedure (3.5), we derive a 
Dyson equation for the Green functions of the random diluted system 

g m n ( O )  pmn(O> + Pmk(0)Vkj(m)gjn(w) (5.1) 
k, j 

with 

and 

vll v12 

v21 v22 

v = x q1v1 (5.3) 
1 

where V, is the potential associated with a single vacancy on the site 1 and has the four 
blocks with n o n h d l  elements 

0 

1 

v:l(w) = V,'2(O) 

We introduce the scattering T matrix defined as 

Tmn(o)  = 2 vmk(')Mii(u) 
k 

with 

(5.4) 

(5.5) 

and rewrite equation (5.1) as 

g m n ( O )  = pmn(w> -k 2 Pmk(W)Tkj(W)gjn(w). (5.7) 
k , j  

We can also write formally a Dyson equation for the Green functions Gmn(w),  i.e. 
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(5.8) 

where 

(5.9) 

and a ( w )  is the self-energy. 

tractable. The scattering T matrix is now given by 
We see from (5.3) that the problem of a single vacancy localised on the site 1 is 

(5.10) 

with 

Ml;mn(o) = 6mn - Pmk(o)Vkkn(W)* (5.11) 

The T, matrix has non-null elements only in four blocks, similarly to the blocks of V, 
defined in (5.4). The presence of g on the right-hand side of equation (5.1) shows that 
the exact solution includes multiple scattering of the spin excitations by a single defect. 

From the configurational average of equation (5.7) and from equation (5.8) we find 

(5.12) 

In order to find the configurational average of the scattering T matrix, we first write 

T = V(l  + PT) = Q, (5.13) 

k 

0 = ( I  + (T)P)-'(T) 

where ( T )  is the configurational average of the scattering Tmatrix. 

I 

where 

Q, = qrVl(l + P T )  = T,  1 + P x e m ) .  ( m + l  
(5.14) 

To eliminate the restriction m # 1 in (5.14), we introduce the operator P defined as 

P;! = P;! if m(n) # 1 - 1, I, 1 + 1 

P;! = 0 if m(n) = 1 - 1,1,1+ 1 

and a(P) = 1.2. From (5.14) and (5.15) we derive 

T = Tl(1 + PT).  
I 

Let us make the approximation (average T-matrix approximation (ATA)) 

(x I T I T )  = (E I T, ) (T )  = (1 - C)(T/)(T)  

to find 

( T )  = [I - (1 - c)(TI)P]-l(l - c)(T,). 

From (5.12) and (5.18) we derive 

(5.15) 

(5.16) 

(5.17) 

(5.18) 
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U =  [ I  - (1 - c)(T/)P/]- ' (~ - c) (T/ ) .  (5.19) 

So in the low-concentration limit (1 - c) 4 1, we have 

U = (1 - c)(T,)  (5.20) 

where (T,) is the configurational average of the scattering matrix for a single localised 
vacancy. 

The Green functions Gmn(o) have translational symmetry (3 .7 ) ,  then the spatial 
Fourier transform of (5.8) is 

G(q, 0) = P(q, + P(q, w)a(q,  w)G(q, 0) (5.21) 

where 

(5.22) 
&(q, 01 = (1 - c) 2 T ; $ ~ ( w )  eiq(m-n). 

m,n 

T;Cn has non-null elements for m(n) = 1 - 1, 1, 1 + 1, where 1 is a site occupied by a 
vacancy, and a(p) = 1 ,2 .  

From (5.21) we find 

G(q,w) = [ I  - P(q, w M q ,  w)l-" U). (5.23) 

In order to find the vacancy projector L(q, U ) ,  we introduce the restricted spatial 
Fourier transform (Cowley and Buyers 1972) 

x A ( q ,  0) = 2 v / ; k , / + A ( m )  eiq[k-('+A)l 
k 

where A = & 1. So the spatial Fourier transform of equation (5.1) is 

(5.24) 

(5.25) 

from which we derive 

with 
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Then the physical Green function is 
- 
G(q, = G(q, 0) - G(q, 0) = [ I  - L(q, o)lG(q, w). (5.28) 

The poles of the physical Green function (5.28) give the magnetic elementary exci- 
tations of the random diluted system. Equations (5.28), (5.27), (5.24) and (5.11) show 
that the excitations associated with the defects, created by the vacancies, are the solutions 
of the determinant equation 

(5.29) det(Z - PV,) = 0. 

We can factorise this equation to find 

X ( O )  - &[l - +(l  - b)2]'/2{[9 - +(l - b)']'I2 - [ l  - a(1 - b)2]"2} = 0 (5.30) 

with the anisotropy parameter 

b = l - D .  (5.31) 

The physical quantity of experimental interest is the scattering function, which is 
directly related to the scattering cross section in a scattering experiment. This quantity 
is related to the Greeen function at zero temperature by (Lovesey 1980, Cowley and 
Buyers 1972) 

S ( q ,  w )  = Im[G'l(q, w )  * - 6 ' 2 ( q ,  w )  + P ( q ,  w )  -t G2'(q, U)] (5.32) 

where the upper signs refer to nuclear reciprocal lattice points and the lower signs refer 
to magnetic reciprocal lattice points. 

S(q, w )  = Im{[l - L"(q, w )  - LZ1(q,  w)][G"(q, 0) 5 G12(q, w)] 

Substituting (3.10) in (5.33) we obtain 

+ [I - L12(q, 0) - LZ2(q,  41[G22(q, 0) 5 W q ,  w)l}, (5.33) 

Using the well known Dirac formula 

1 1 
X + i O +  X 
-- - - T ixd(X) (5.34) 

and (5 .6) ,  (5.23) and (5.27), we see that (5.33) is a linear combination of delta functions 
with arguments given by (4.10) and (5.30). 

So our theory gives a zero halfwidth at the half-maximum of the scattering function, 
which is consistent with the approach used in this work (Birgenau and Shirane 1978). 
The non-zero halfwidths at the half-maximum of the scattering function in the works of 
Harris et a1 (1974), Holcomb (1974) and Endoh et a1 (1981) are introduced ad hoc, 
considering a non-null small imaginary part in the frequencies of the scattering function. 

Consequently, equations (4.10) and (5.30), and equation (5.33), give the same 
information about the dynamics of the system. 

6. Results and discussion 

We discuss the roles played by XY anisotropy and by applied magnetic field per- 
pendicular to the chain, and the effect of both on the localisation of the resonances 
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2 0  

w 

0 '  b 1 .o 
Figure 1. Frequency w (in units of 2JS)  versus 
the XY anisotropy parameter b,  showing how the 
resonance associated with the defect is pushed to 
zero frequency as the model is changed from XY 
model to isotropic Heisenberg model, as the b 
parameter is increased from0 to 1, with no applied 
magnetic field. 

Figure 2. Frequency w (in units of 2JS)  versus the 
Ising anisotropy parameter d,  with no applied 
magnetic field, showing how the resonance associ- 
ated with the defect is pushed to zero frequency as 
the modelischangedfrom Ising model to isotropic 
Heisenberg chain, as the d parameter is increased 
from0 to 1. (After Endohetal1981.) 

associated with excitations on end spins of the random one-dimensional diluted Hei- 
senberg antiferromagnetic chain. 

We show in figure 1 the role played by XY anisotropy. The superior and inferior 
limits of the energy band are given by equation (4.10) with h = 0, and q = n/2 and q = 
0, respectively. The excitations on spin chain ends are given by equation (5.30). We see 
that, in the Heisenberg chain, b = 1, there are no separated resonances associated with 
excitations on end spins. This is explained in terms of the singular nature of the density 
of states in one dimension at the band edges (Endoh et a1 1981). When the anisotropy 
parameter decreases from b = 1 to b = 0, i.e. the model is changed from Heisenberg to 
X Y  model, the resonances associated with excitations on end spins separate from the 
spin-wave band. At b = 0, i.e. X Y  model, the resonance associated with excitations on 
end spins occurs at a frequency equal to one-half of the inferior limit of the spin-wave 
band frequencies. 

In figure 2 we show results of a similar study of Endoh et a1 (1981), who show that, 
when the Ising anisotropy parameter d changes from d = 1 to d = 0, i.e. the model is 
changed from Heisenberg to Ising, the frequencies of the resonances associated with 
excitations on end spins are different from the spin-wave band frequencies. 

This part of our work complements the work of Endoh et a1 (1981) and we can 
conclude that in the Heisenberg model the anisotropy, independent of its type, separates 
the frequencies of the resonances associated with excitations on spin chain ends from 
the spin-wave band frequencies. 

Thermodynamically, the Heisenberg chains with an applied magnetic field per- 
pendicular to the chain or with an X Y  anisotropy with h = 2[2(1 - b)]'I2, where h is the 
scaled magnetic field ( h  = p g H / 2 J S )  and b is the X Y  anisotropy parameter (b  = 1 - D), 
are equivalent (Pires and Gouv&a 1984). In figure 3 we show plots of the spin-wave band 
with b = 1 (Heisenberg model), and of resonances associated with excitations on end 
spins, equation (5.30). We see that the resonances associated with excitations on end 
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Figure3. Frequency w (in units of 2JS)  versus the 
scaled applied magnetic field h ( h  = p g H / U S ) ,  
for the isotropic Heisenberg chain. 

Figure 4. Frequency w (in units of US) versus the 
scaled applied magnetic field h ( h  = p g h / U S ) ,  
with X Y  anisotropy parameter b = 0.9914. 

spins do not occur at frequencies outside the spin-wave band, even for fields as great as 
70 kOe (h = 0.32). Then, differently from XY anisotropy, .an applied magnetic field 
perpendicular to the chain does not localise the resonances associated with excitations 
on end spins. 

An king model and a Heisenberg model with an X Y  anisotropy and an applied 
magnetic field perpendicular to the chain, with h = 2[2(1 - b)]'/2, are thermo- 
dynamically equivalent (Pires and GouvCa 1984). As we are interested particularly in 
TMMC:CU, in figure 4 we plot equations (4.10) and (5.30) with b = 0.9914, which is the 
XYanisotropy parameter of TMMC : Cu (Heilmann et d1981). First, we see a split of the 
spin-wave band, which comes from the out-of-plane spin contributions. Secondly, for 
b = 0.9914 and h = 0.26, the Heisenberg model does not have the same behaviour as 
the Ising model. 

Then we may conclude that the thermodynamic equivalence between an XY ani- 
sotropy and an applied magnetic field perpendicular to the chain, and between the Ising 
model and the Heisenberg model with an X Y  anisotropy and an applied magnetic field 
perpendicular to the chain, are not preserved on the dynamics of the random one- 
dimensional diluted antiferromagnets. 
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Appendix 

In the calculations using equation (5.30) we have to know the Green functions 
P ; t ( o ) ,  CY (/3) = 1, 2, which have translational symmetry, whence P ; t ( o )  = 
P g - n , ( ~ ) ,  and we need to evaluate P g o ( o ) ,  P f " ( o )  and Prp(w). 
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These Green functions are given by equation (3 .8)  as 

which for an infinite chain can be approximated by the integral over the first Brillouin 
zone 

1 P n  

In the evaluation of the integrals (A.2) we make use of the residues method to find 

Pi'(w) = x + 2/(A2 +AB)"' 

P ~ ' ( w )  = [X + 2/B(A2 +AB)*I2][-(2A + B )  + 2(A2 +AB)'12] (A.3) 
P:'(w) = [2/a(A2 + AB)1'2][A - (A2 +AB)'/'] 

with 

A = x 2 - 4  B = a 2  (A.4) 

P ( w )  = Pl'(-w) P y w )  = P'2(w). ( A 4  
When A is real and [AI S B the integrals (A.2) are not well defined; following the 

standard procedure (Wolfram and Callaway 1963) we add to the frequency a small, 
positive, imaginary part. 

As we are interested only in the localised impurity states, we take in our calculations 
w real and IAl> B .  
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